English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91867 (63%)
造访人次 : 14035431      在线人数 : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93963


    题名: 一維和二維半柔性高分子之力學性質
    其它题名: Mechanical property of one and two dimensional semiflexible biopolymers
    作者: 吳浩澐;Wu, Hao-Yun
    贡献者: 淡江大學物理學系碩士班
    周子聰;Zhou, Zicong
    关键词: 半柔性高分子;力學性質;協同連接鏈模型;約束條件;固有曲率;semiflexible biopolymers;mechanical property;cooperative jointed chain(CJC);endpoint constraints condition;inherent curvature
    日期: 2013
    上传时间: 2014-01-23 13:44:15 (UTC+8)
    摘要:   協同連接鏈(Cooperative Jointed Chain - CJC)模型是描述半柔性高分子性質的基本模型。我們用精確計數(exact enumeration)法研究端點約束條件對有限長度的CJC之力學性質的影響。我們固定一維鏈的頭、尾兩端方向,計算力與相對伸長的關係,並與無限長鏈的已知理論結果比較,以研究端點約束條件對有限長度的CJC之力學性質的影響。一維情況下,固定(向左或向右)或不固定(隨機)鏈兩端方向產生共九種可能的組合,扣去簡併會有六種結果。我們的結果顯示所有組合在鏈很長時都會趨近於無限長鏈極限的結果。但短鏈會有三種類型的結果,分別是力不大時伸長量很接近、較小、較大於無限長鏈極限的結果;其中兩端棒不固定時最接近無限長鏈極限的結果、兩端棒向左時在力不大時伸長量最小、兩端棒向右時在力不大時伸長量最大。我們將所有的結果都做到鏈長N=200,而結果顯示N>100時兩端點的約束條件(固定端點棒的方向)對結果影響已經可以忽略。
      我們用精確計數法研究了兩個看起來不同的用來描述半柔性高分子性質的二維模型,其中一個是CJC模型,另一個是具有固有曲率(intrinsic curvature)c的模型。CJC模型只有一個參數,即彎曲剛度(bending rigidity)k1。模型二則有兩個參數,即彎曲剛度k2與固有曲率。我們發現當模型二的c為負時,完全等價於CJC模型;c為正但比較小時也等價於CJC模型。在這裡,等價指的是對於任意給定的k2與c,我們總可以找到一個k1,使得兩個模型x方向的相對伸長量、端點座標的y分量的平方之平均值相同、及平均能量做為力的函數僅差一個常數。因此在這些情況下模型二可以完全由模型一取代。我們也發現在等價的狀態下,固定模型二的k2時,CJC模型的k1與模型二的c具有線性關係。
    Cooperative jointed chain (CJC) model is a basic model to describe the property of semiflexible polymer. We use the exact enumeration method to study the effect of constraints on the mechanical properties of a CJC with finite length. We fix the direction of both ends of a one-dimensional chain, calculate the relationship between force and relative extension, and compare them with the existed results of an infinite long chain. In 1D case, fixing (directed to left or right) or freeing (in randomly) both ends of the chain result in nine possible situations in which three are degenerate. Our results show that with increasing length of chain, in all cases the results get closer and closer to the result of infinite long chain. But there are three types of results for short chain, i.e., the relative extensions become very close, smaller or larger than that of an infinite long chain. When force is small, the extension with free ends is closest to the result of a infinite long chain. Meanwhile, fixing both ends to left results in smallest extension, and fixing both ends to right leads to largest extension. We have done all results from N=3 to N=200 with N being the length of chain. Our results show that when N>100, effects of constraint conditions (fixed both ends of the bar) affected can be disregard.
    We use the exact enumeration method to study two two-dimensional models of semiflexible polymer. One of models is the CJC model, and the other is a model with intrinsic curvature c. CJC model has only one parameter which is bending rigidity k1, but the second model has two parameters which are bending rigidity k2 and intrinsic curvature. We found that when c is negative, the second model is equivalent to the CJC model. When c is positive but small, the second model is also equivalent to the CJC model. Here the “equivalence” means that for any k2 and c, we can always find a k1 such that the relative extensions and the <yN2> both models are the same, where yN is the component of position vector of the right end, and the mean energies of two models are differed by a constant only. Therefore, in these cases, the second model can be replaced completely by CJC. We also find that in equivalent state and with a given k2, k1 and c have linear relation.
    显示于类别:[物理學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML187检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈