English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58074/91663 (63%)
造访人次 : 13730767      在线人数 : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93541

    题名: Dynamically Iterative MapReduce
    作者: Lee, Wei-Tsong;Wu, Ming-Zhi;Wei, Hsin-Wen;Yu, Fang-Yi;Lin, Yu-Sun
    贡献者: 淡江大學電機工程學系
    关键词: Dynamically iterative MapReduce;K-Means;Particle swarm optimization (PSO);Genetic algorithm (GA);Simulated annealing (SA)
    日期: 2013-11-01
    上传时间: 2014-01-22 16:43:39 (UTC+8)
    出版者: 臺北市:臺灣學術網路管理委員會
    摘要: MapReduce is a distributed and parallel computing model for data-intensive tasks with features of optimized scheduling, flexibility, high availability, and high manageability. MapReduce can work on various platforms; however, MapReduce is not suitable for iterative programs because the performance may be lowered by frequent disk I/O operations. In order to improve system performance and resource utilization, we propose a novel MapReduce framework named Dynamically Iterative MapReduce (DIMR) to reduce numbers of disk I/O operations and the consumption of network bandwidth by means of using dynamic task allocation and memory management mechanism. We show that DIMR is promising with detail discussions in this paper.
    關聯: 網際網路技術學刊=Journal of Internet Technology 14(6),頁 953-962
    DOI: 10.6138/JIT.2013.14.6.10
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Dynamically Iterative MapReduce.pdf624KbAdobe PDF710检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈