淡江大學機構典藏:Item 987654321/93415
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11666400      線上人數 : 21341
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/93415


    題名: Protein Crystallization Prediction with AdaBoost
    作者: Hsieh, Cheng-Wei;Hsu, Hui-Huang;Pai, Tun-Wen
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: X-ray crystallography;protein crystallization;feature selection;SVM: support vector machines;AdaBoost;data mining;bioinformatics
    日期: 2013-03
    上傳時間: 2014-01-09 15:03:20 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: To determine the structure of a protein by X-ray crystallography, the protein needs to be purified and crystallized first. However, some proteins cannot be crystallized. This makes the average cost of protein structure determination much higher. Thus it is desired to predict the crystallizability of a protein by a computational method before starting the wet-lab procedure. Features from the primary structure of a target protein are collected first. With a proper set of features, protein crystallizability can be predicted with a high accuracy. In this research, 74 features from previous researches are re-examined by two filter-mode feature selection methods. The selected features are then used for crystallization prediction by three versions of AdaBoost. The Support Vector Machines (SVMs) are also tested for comparison. The best prediction accuracy of AdaBoost reaches 93 percent and 48 important features are identified from the collected 74 features.
    關聯: International Journal of Data Mining and Bioinformatics 7(2), pp.214-227
    DOI: 10.1504/IJDMB.2013.053197
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML65檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋