淡江大學機構典藏:Item 987654321/93415
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64185/96959 (66%)
造访人次 : 11541431      在线人数 : 21269
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/93415


    题名: Protein Crystallization Prediction with AdaBoost
    作者: Hsieh, Cheng-Wei;Hsu, Hui-Huang;Pai, Tun-Wen
    贡献者: 淡江大學資訊工程學系
    关键词: X-ray crystallography;protein crystallization;feature selection;SVM: support vector machines;AdaBoost;data mining;bioinformatics
    日期: 2013-03
    上传时间: 2014-01-09 15:03:20 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: To determine the structure of a protein by X-ray crystallography, the protein needs to be purified and crystallized first. However, some proteins cannot be crystallized. This makes the average cost of protein structure determination much higher. Thus it is desired to predict the crystallizability of a protein by a computational method before starting the wet-lab procedure. Features from the primary structure of a target protein are collected first. With a proper set of features, protein crystallizability can be predicted with a high accuracy. In this research, 74 features from previous researches are re-examined by two filter-mode feature selection methods. The selected features are then used for crystallization prediction by three versions of AdaBoost. The Support Vector Machines (SVMs) are also tested for comparison. The best prediction accuracy of AdaBoost reaches 93 percent and 48 important features are identified from the collected 74 features.
    關聯: International Journal of Data Mining and Bioinformatics 7(2), pp.214-227
    DOI: 10.1504/IJDMB.2013.053197
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML65检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈