English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7378944      線上人數 : 76
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93413


    題名: Prediction of Regulatory Gene Pairs Using Dynamic Time Warping and Gene Ontology
    作者: Yang, Andy C.;Hsu, Hui-Huang;Lu, Ming-Da;Tseng, Vincent S.;Shih, Timothy K.
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: microarray time series data;missing value imputation;gene regulation prediction;DTW;dynamic time warping;gene ontology
    日期: 2013-12
    上傳時間: 2014-01-09 13:38:15 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.
    關聯: International Journal of Data Mining and Bioinformatics 10(2), pp.121-145
    DOI: 10.1504/IJDMB.2014.064010
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋