English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54389/89220 (61%)
造访人次 : 10568659      在线人数 : 17
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93413


    题名: Prediction of Regulatory Gene Pairs Using Dynamic Time Warping and Gene Ontology
    作者: Yang, Andy C.;Hsu, Hui-Huang;Lu, Ming-Da;Tseng, Vincent S.;Shih, Timothy K.
    贡献者: 淡江大學資訊工程學系
    关键词: microarray time series data;missing value imputation;gene regulation prediction;DTW;dynamic time warping;gene ontology
    日期: 2013-12-01
    上传时间: 2014-01-09 13:38:15 (UTC+8)
    出版者: Olney: Inderscience Publishers
    摘要: Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.
    關聯: International Journal of Data Mining and Bioinformatics 10(2), pp.121-145
    DOI: 10.1504/IJDMB.2014.064010
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈