English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51883/87052 (60%)
Visitors : 8461303      Online Users : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93289


    Title: Fabrication of flexible conductive films derived from poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) (PEDOT:PSS) on the nonwoven fabrics substrate
    Authors: Wu, Chieh-Han;Shen, Hsiu-Ping;Don, Trong-Ming;Chiu, Wen-Yen
    Contributors: 淡江大學化學工程與材料工程學系
    Keywords: Composite materials;Electrical conductivity;Coatings;Elastic properties
    Date: 2013-12-16
    Issue Date: 2013-12-16 09:48:16 (UTC+8)
    Publisher: Elsevier S.A.
    Abstract: In this research, conducting poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) (PEDOT:PSS) aqueous dispersion was synthesized at first via chemical oxidative polymerization and followed by mixing it with poly(styrene-r-butyl acrylate) P(St-BA) aqueous latex, creating a conductive material with outstanding stretchability. The elastic conductive composite were then film formed on the glass and poly(ethylene terephthalate) (PET) nonwoven fabric substrate by spin coating and dip coating, respectively. Composite films with various contents of PEDOT:PSS polymer (10–100 wt.%) had been prepared. From the conductivity measurements, the conductivity was still kept as high as 88 S cm−1 even the PEDOT:PSS content was lowered to 10 wt.%. Furthermore, the elasticity of conductive films on the PET-nonwoven fabric substrate was evaluated by the 180° bending test repeating 100 times. With introducing soft P(St-BA) material in the PEDOT:PSS phase, the surface resistance increased merely 3–6 times after bending 100 times, while the surface resistance for pure PEDOT:PSS film could reach 18–20 times.
    Relation: Materials Chemistry and Physics 143(1), pp.143-148
    DOI: 10.1016/j.matchemphys.2013.08.037
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML48View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback