淡江大學機構典藏:Item 987654321/93240
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62805/95882 (66%)
造訪人次 : 3926149      線上人數 : 704
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/93240


    題名: Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-D-sorbitol
    作者: Lai, Wei-Chi;Chen, Chien-Chu
    貢獻者: 淡江大學化學工程與材料工程學系
    日期: 2014-01-01
    上傳時間: 2013-12-10 13:27:50 (UTC+8)
    出版者: Cambridge: R S C Publications
    摘要: Gel electrolytes have usually been prepared by adding gelators or polymers to the liquid organic solvent-based electrolytes. In this study, we proposed a method to prepare gel electrolytes using gelators in liquid (low molecular weight) polymer-based electrolytes. Inexpensive 1,3:2,4-dibenzylidene-D-sorbitol (DBS) was chosen as a gelator for poly(ethylene glycol) (PEG)-based electrolytes at relatively low DBS concentrations. A series of gel electrolytes was produced by varying the DBS amounts, PEG molecular weights and PEG end groups. First, we found that DBS molecules self-assembled into 3-D networks consisting of nanofibrils that were approximately 10 nm in diameter, as measured by transmission electron microscopy; they exhibited spherulite-like morphologies under polarizing optical microscopy. Second, the dynamic rheological measurements demonstrated that the elastic modulus and the dissolution temperature of DBS–PEG gels increased with the increasing DBS content. The thermal degradation temperature of these gels also increased when the DBS concentration increased, as determined by thermogravimetric analysis. In addition, adding DBS may help to facilitate the dissolution of iodide and iodine in PEG due to its ether groups. Furthermore, the conductivity of the prepared DBS–PEG gel electrolytes was similar to that of the liquid PEG electrolytes (without DBS). When used in dye-sensitized solar cells (DSSC), the PEG-based electrolytes having inactive methyl end groups achieved the highest energy conversion efficiency among the tested cells. The efficiency of DSSC filled with our gel electrolytes remained basically the same over a one-month period, implying that the materials were relatively stable.
    關聯: Soft Matter 10(2), pp.312-319
    DOI: 10.1039/C3SM52430B
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML235檢視/開啟
    index.html0KbHTML177檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋