English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54451/89232 (61%)
造访人次 : 10572846      在线人数 : 37
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93240

    题名: Novel poly(ethylene glycol) gel electrolytes prepared using self-assembled 1,3:2,4-dibenzylidene-D-sorbitol
    作者: Lai, Wei-Chi;Chen, Chien-Chu
    贡献者: 淡江大學化學工程與材料工程學系
    日期: 2014-01-01
    上传时间: 2013-12-10 13:27:50 (UTC+8)
    出版者: Cambridge: R S C Publications
    摘要: Gel electrolytes have usually been prepared by adding gelators or polymers to the liquid organic solvent-based electrolytes. In this study, we proposed a method to prepare gel electrolytes using gelators in liquid (low molecular weight) polymer-based electrolytes. Inexpensive 1,3:2,4-dibenzylidene-D-sorbitol (DBS) was chosen as a gelator for poly(ethylene glycol) (PEG)-based electrolytes at relatively low DBS concentrations. A series of gel electrolytes was produced by varying the DBS amounts, PEG molecular weights and PEG end groups. First, we found that DBS molecules self-assembled into 3-D networks consisting of nanofibrils that were approximately 10 nm in diameter, as measured by transmission electron microscopy; they exhibited spherulite-like morphologies under polarizing optical microscopy. Second, the dynamic rheological measurements demonstrated that the elastic modulus and the dissolution temperature of DBS–PEG gels increased with the increasing DBS content. The thermal degradation temperature of these gels also increased when the DBS concentration increased, as determined by thermogravimetric analysis. In addition, adding DBS may help to facilitate the dissolution of iodide and iodine in PEG due to its ether groups. Furthermore, the conductivity of the prepared DBS–PEG gel electrolytes was similar to that of the liquid PEG electrolytes (without DBS). When used in dye-sensitized solar cells (DSSC), the PEG-based electrolytes having inactive methyl end groups achieved the highest energy conversion efficiency among the tested cells. The efficiency of DSSC filled with our gel electrolytes remained basically the same over a one-month period, implying that the materials were relatively stable.
    關聯: Soft Matter 10(2), pp.312-319
    DOI: 10.1039/C3SM52430B
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈