English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52568/87720 (60%)
造訪人次 : 9373003      線上人數 : 48
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/93226


    題名: Nucleation and crystal growth kinetics of poly(l-lactic acid) with self-assembled DBS nanofibrils
    作者: Lai, Wei-Chi;Liao, Jia-Pei
    貢獻者: 淡江大學化學工程與材料工程學系
    關鍵詞: Polymers;Nucleation;Crystal growth;Crystal structure
    日期: 2013-04
    上傳時間: 2013-12-10 13:09:15 (UTC+8)
    出版者: Lausanne: Elsevier S.A.
    摘要: The effect of 1,3:2,4-dibenzylidene-d-sorbitol (DBS) on the crystallization behaviors of poly(l-lactic acid) (PLLA) was examined in this study. A small amount (≤4 wt%) of DBS altered the crystallization rate and regime transition temperature of PLLA. First, the addition of DBS and the formation of self-assembled DBS nanofibrils both increased the nucleation rate of PLLA. Second, the curves of the spherulitic growth rate versus the crystallization temperature of PLLA were discontinuous and did not show the typical bell-shaped behavior for all samples. We found that the change in crystal structures (α′-to-α) affected the regime transition temperatures, which led to the discontinuity. The regime transition (regime II–III) temperatures of PLLA slightly decreased as the DBS amounts were increased. This indicates that the more regular structure (regime II) of PLLA formed at lower temperatures when more DBS was added. In addition, the spherulitic growth rate of PLLA was found to be mainly influenced by the fold surface free energy. When the DBS amounts were increased, the increase in the fold surface free energy decreased the growth rate of PLLA. Nonetheless, the Avrami exponent, n, was not significantly changed because the spherulitic growth geometry and nucleation mechanism of PLLA were basically the same. The Avrami plot also shows that the secondary crystallization began earlier due to the formation of DBS nanofibrils for the samples containing higher DBS amounts.
    關聯: Materials Chemistry and Physics 139(1), pp.161-168
    DOI: 10.1016/j.matchemphys.2013.01.014
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML147檢視/開啟
    index.html0KbHTML107檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋