淡江大學機構典藏:Item 987654321/92988
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4029106      在线人数 : 572
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/92988


    题名: Energy Efficient Geographic Routing Algorithms in Wireless Sensor Network
    作者: Chen, Tseng-Yi;Wei, Hsin-Wen;Lee, Che-Rung;Huang, Fu-Nan;Hsu, Tsan-sheng;Shih, Wei-Kuan
    贡献者: 淡江大學電機工程學系
    关键词: Geographic routing;Energy-efficient;Wireless sensor network;SINR;Interference power
    日期: 2013-05-01
    上传时间: 2013-11-01 17:24:46 (UTC+8)
    出版者: Singapore: World Scientific Publishing Co. Pte. Ltd.
    摘要: Over the past decade, energy efficiency has consistently been a critical research topic in the field of wireless sensor networks. In wireless networks, signal interference often leads to power waste in a sensor node. Several SINR-based routing algorithms designed for energy efficiency or interference avoidance had been proposed. However, they are either too complex to be useful in practices or may slow in routing computation speed. In this paper, two energy efficient geographic routing algorithms (EEGRA) for wireless sensor network are proposed to address the power consumption issue while considering the routing computation speed. The first algorithm take the value of interference into the routing cost function, and uses it in the routing decision. The second algorithm transforms the problem into a constrained optimization problem, and solves it by searching the optimal discretized interference level. We adopt four geographic routing algorithms: GOAFR+, Face Routing, GPSR, and RandHT, in EEGRA algorithms and compare them with three other routing methods in terms of power consumption and computation cost for the grid and irregular sensor topologies. The experimental result shows that the EEGRA algorithms reduce energy consumption by 30–50% comparing to geographic routing methods. In addition, the time complexity of EEGRA algorithms is similar to the geographic greedy routing methods, which is much faster than the optimal SINR-based algorithm.
    關聯: Journal of Interconnection Networks 14(1), 1350001(23pages)
    DOI: 10.1142/S0219265913500011
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML229检视/开启
    index.html0KbHTML187检视/开启
    index.html0KbHTML130检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈