淡江大學機構典藏:Item 987654321/92889
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58286/91808 (63%)
造访人次 : 13821406      在线人数 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92889


    题名: Detection of Sybil Attacks in Participatory Sensing using Cloud based Trust Management System
    作者: Chang, Shih-Hao;Chuang, Hao-Wen;Ho, Cheng-Han;Cheng, Shin-Ming;Chung, Ping-Tsai
    贡献者: 淡江大學資訊工程學系
    关键词: Participatory Sensing;Sybil Attack;Network Trustworthiness;Characteristics Checker;Consensus-based
    日期: 2013-11-22
    上传时间: 2013-10-23 15:38:22 (UTC+8)
    摘要: Participatory sensing is a revolutionary paradigm in which volunteers collect and share information from their local environment using mobile phones. Different from other participatory sensing application challenges who considers user privacy and data trustworthiness, we consider network trustworthiness problem namely Sybil attacks in participatory sensing. Sybil attacks focus on creating multiple online user identities called Sybil identities and try to achieve malicious results through these identities. They exploit inadvertent leakage of user privacy due to the inherent relationship between reputation information to affect the popularity, reputation, value and other characteristics of resources in participatory sensing. Therefore, the proposed Hybrid Reputation Monitoring (HRM) framework combined Characteristics Checking Scheme (CCS) and Consensus-Based Agent (CBA) to verify Sybil attacks. To verify the proposed framework, we currently implementing developed schemes on OMNeT++ network simulator in multiple scenarios to achieve Sybil identities detection in our simulation environment.
    關聯: 8th International Symposium on Wireless Pervasive Computing ISWPC 2013, 5p.
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Detection of Sybil Attacks in Participatory Sensing using Hybrid Reputation Monitoring.pdf225KbAdobe PDF669检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈