English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49645/84944 (58%)
造訪人次 : 7701248      線上人數 : 55
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92889


    題名: Detection of Sybil Attacks in Participatory Sensing using Cloud based Trust Management System
    作者: Chang, Shih-Hao;Chuang, Hao-Wen;Ho, Cheng-Han;Cheng, Shin-Ming;Chung, Ping-Tsai
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Participatory Sensing;Sybil Attack;Network Trustworthiness;Characteristics Checker;Consensus-based
    日期: 2013-11-22
    上傳時間: 2013-10-23 15:38:22 (UTC+8)
    摘要: Participatory sensing is a revolutionary paradigm in which volunteers collect and share information from their local environment using mobile phones. Different from other participatory sensing application challenges who considers user privacy and data trustworthiness, we consider network trustworthiness problem namely Sybil attacks in participatory sensing. Sybil attacks focus on creating multiple online user identities called Sybil identities and try to achieve malicious results through these identities. They exploit inadvertent leakage of user privacy due to the inherent relationship between reputation information to affect the popularity, reputation, value and other characteristics of resources in participatory sensing. Therefore, the proposed Hybrid Reputation Monitoring (HRM) framework combined Characteristics Checking Scheme (CCS) and Consensus-Based Agent (CBA) to verify Sybil attacks. To verify the proposed framework, we currently implementing developed schemes on OMNeT++ network simulator in multiple scenarios to achieve Sybil identities detection in our simulation environment.
    關聯: 8th International Symposium on Wireless Pervasive Computing ISWPC 2013, 5p.
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Detection of Sybil Attacks in Participatory Sensing using Hybrid Reputation Monitoring.pdf225KbAdobe PDF590檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋