淡江大學機構典藏:Item 987654321/92701
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 63246/95943 (66%)
造访人次 : 4820744      在线人数 : 131
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/92701


    题名: On Improving Fault Tolerance for Heterogeneous Hadoop MapReduce Clusters
    作者: Lin, Chi-Yi;Chen, Ting-Hau;Cheng, Yi-No
    贡献者: 淡江大學資訊工程學系
    关键词: MapReduce;heterogeneous environments;intermediate data;checkpointing;speculative execution
    日期: 2013-12-16
    上传时间: 2013-10-22 11:20:56 (UTC+8)
    出版者: Institute of electrical and electronics engineers (IEEE)
    摘要: The computing paradigm of MapReduce has gained extreme popularity in the area of large-scale data-intensive applications in recent years. Hadoop, an open-source implementation of MapReduce, can be set up easily and rapidly on commodity hardware to form a massive computing cluster. In such a cluster, task failures and node failures are not an anomaly, which will cause a substantial impact on Hadoop’s performance. Although Hadoop can restart failed tasks automatically and compensate for slow tasks by enabling speculative execution, many researchers have identified the shortcomings of Hadoop’s fault tolerance. In this research, we try to improve them by designing a simple checkpointing mechanism for Map tasks, and using a revised criterion for identifying slow tasks. Specifically, our checkpointing mechanism saves the partial output produced by the Mappers, and our criterion for identifying slow tasks considers tasks with variable progress rates. By preliminary simulations, although the results show only marginal performance improvement compared with native Hadoop and the LATE scheduler, we believe that our approaches have the potential to offer greater performance gain on real workload.
    關聯: 2013 International Conference on Cloud Computing and Big Data (CloudCom-Asia 2013)
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈