English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54918/89265 (62%)
造访人次 : 10601024      在线人数 : 29
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92657


    题名: A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data
    作者: Yen, Shwu-Huey;Hsieh, Ya-Ju
    贡献者: 淡江大學資訊工程學系
    关键词: Arbitrary KD-tree (KDA);Feature Point;KD-Tree;Nearest Neighbor (NN);Image Stitching
    日期: 2013-03
    上传时间: 2013-10-21 17:21:13 (UTC+8)
    出版者: Seoul: Korean Society for Internet Information
    摘要: The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.
    關聯: Transactions on Internet and Information Systems 7(3), pp.459-470
    DOI: 10.3837/tiis.2013.03.003
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A KD-tree-based nearest neighbor search for large quantities of data(TIIS).pdf960KbAdobe PDF236检视/开启
    index.html0KbHTML77检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈