English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56431/90260 (63%)
造訪人次 : 11700060      線上人數 : 31
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92657

    題名: A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data
    作者: Yen, Shwu-Huey;Hsieh, Ya-Ju
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Arbitrary KD-tree (KDA);Feature Point;KD-Tree;Nearest Neighbor (NN);Image Stitching
    日期: 2013-03
    上傳時間: 2013-10-21 17:21:13 (UTC+8)
    出版者: Seoul: Korean Society for Internet Information
    摘要: The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.
    關聯: Transactions on Internet and Information Systems 7(3), pp.459-470
    DOI: 10.3837/tiis.2013.03.003
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A KD-tree-based nearest neighbor search for large quantities of data(TIIS).pdf960KbAdobe PDF242檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋