English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58605/92268 (64%)
造訪人次 : 545154      線上人數 : 81
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92490

    題名: Time series pattern discovery by a PIP-based evolutionary approach
    作者: Chen, Chun-Hao;Tseng, Vincent S.;Yu, Hsieh-Hui;Hong, Tzung-Pei
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Genetic algorithm;Segmentation;Time series;Clustering;Perceptually important points
    日期: 2013-09
    上傳時間: 2013-10-16 15:16:00 (UTC+8)
    出版者: Heidelberg: Springer
    摘要: Time series are an important and interesting research field due to their many different applications. In our previous work, we proposed a time-series segmentation approach by combining a clustering technique, discrete wavelet transformation (DWT) and a genetic algorithm to automatically find segments and patterns from a time series. In this paper, we propose a perceptually important points (PIP)-based evolutionary approach, which uses PIP instead of DWT, to effectively adjust the length of subsequences and find appropriate segments and patterns, as well as avoid some problems that arose in the previous approach. To achieve this, an enhanced suitability factor in the fitness function is designed, modified from the previous approach. The experimental results on a real financial dataset show the effectiveness of the proposed approach.
    關聯: Soft Computing 17(9), pp.1699-1710
    DOI: 10.1007/S00500-013-0985-y
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋