English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57075/90742 (63%)
造訪人次 : 12506031      線上人數 : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92459

    題名: A Search Space Reduced Algorithm for Mining Frequent Patterns
    作者: Yen, Show-Jane;Wang, Chiu-Kuang;Ouyang, Liang-Yuh
    貢獻者: 淡江大學企業管理學系;淡江大學管理科學學系
    關鍵詞: data mining;frequent pattern;frequent itemset;FP-tree;transaction database
    日期: 2012-01
    上傳時間: 2013-10-14 16:21:06 (UTC+8)
    出版者: 臺北市:中央研究院資訊科學研究所
    摘要: Mining frequent patterns is to discover the groups of items appearing always together excess of a user specified threshold. Many approaches have been proposed for mining frequent patterns by applying the FP-tree structure to improve the efficiency of the FP-Growth algorithm which needs to recursively construct sub-trees. Although these approaches do not need to recursively construct many sub-trees, they also suffer the problem of a large search space, such that the performances for the previous approaches degrade when the database is massive or the threshold for mining frequent patterns is low. In order to reduce the search space and speed up the mining process, we propose an efficient algorithm for mining frequent patterns based on frequent pattern tree. Our algorithm generates a subtree for each frequent item and then generates candidates in batch from this sub-tree. For each candidate generation, our algorithm only generates a small set of candidates, which can significantly reduce the search space. The experimental results also show that our algorithm outperforms the previous approaches.
    關聯: Journal of Information Science and Engineering 28(1), pp.177-191
    顯示於類別:[管理科學學系暨研究所] 期刊論文
    [企業管理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    201201_12.pdf期刊論文670KbAdobe PDF511檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋