English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9424422      線上人數 : 10688
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/92451


    題名: Epidemic forecasting with a new fuzzy regression equation
    作者: Hsieh, Wen-Yeh;Tsaur, Ruey-Chyn
    貢獻者: 淡江大學管理科學學系
    關鍵詞: Fuzzy regression model;Possibilistic mean;Possibilistic variance;Pneumonia mortality Epidemic forecasting
    日期: 2013-10-01
    上傳時間: 2013-10-14 11:42:24 (UTC+8)
    出版者: Dordrecht: Springer Netherlands
    摘要: The traditional fuzzy regression model involves two solving processes. First, the extension principle is used to derive the membership function of extrapolated values, and then, attempts are made to include every collected value with a membership degree of at least h in the fuzzy regression interval. However, the membership function of extrapolated values is sometimes highly complex, and it is difficult to determine the h value, i.e., the degree of fit between the input values and the extrapolative fuzzy output values, when the information obtained from the collected data is insufficient. To solve this problem, we proposed a simplified fuzzy regression equation based on Carlsson and Fullér’s possibilistic mean and variance method and used it for modeling the constraints and objective function of a fuzzy regression model without determining the membership function of extrapolative values and the value of h. Finally, we demonstrated the application of our model in forecasting pneumonia mortality. Thus, we verified the effectiveness of the proposed model and confirmed the potential benefits of our approach, in which the forecasting error is very small.
    關聯: Quality & Quantity 47(6), pp.3411-3422
    DOI: 10.1007/s11135-012-9729-9
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML97檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋