English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52310/87426 (60%)
造访人次 : 9084869      在线人数 : 312
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92451

    题名: Epidemic forecasting with a new fuzzy regression equation
    作者: Hsieh, Wen-Yeh;Tsaur, Ruey-Chyn
    贡献者: 淡江大學管理科學學系
    关键词: Fuzzy regression model;Possibilistic mean;Possibilistic variance;Pneumonia mortality Epidemic forecasting
    日期: 2013-10-01
    上传时间: 2013-10-14 11:42:24 (UTC+8)
    出版者: Dordrecht: Springer Netherlands
    摘要: The traditional fuzzy regression model involves two solving processes. First, the extension principle is used to derive the membership function of extrapolated values, and then, attempts are made to include every collected value with a membership degree of at least h in the fuzzy regression interval. However, the membership function of extrapolated values is sometimes highly complex, and it is difficult to determine the h value, i.e., the degree of fit between the input values and the extrapolative fuzzy output values, when the information obtained from the collected data is insufficient. To solve this problem, we proposed a simplified fuzzy regression equation based on Carlsson and Fullér’s possibilistic mean and variance method and used it for modeling the constraints and objective function of a fuzzy regression model without determining the membership function of extrapolative values and the value of h. Finally, we demonstrated the application of our model in forecasting pneumonia mortality. Thus, we verified the effectiveness of the proposed model and confirmed the potential benefits of our approach, in which the forecasting error is very small.
    關聯: Quality & Quantity 47(6), pp.3411-3422
    DOI: 10.1007/s11135-012-9729-9
    显示于类别:[管理科學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈