English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8478497      Online Users : 139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92145

    Title: Uniqueness of the potential function for the vectorial Sturm-Liouville equation on a finite interval
    Authors: Chang, Tsorng-Hwa;Shieh, Chung-tsun
    Contributors: 淡江大學數學學系
    Keywords: Inverse spectral problems;Sturm-Liouville equation
    Date: 2011-10-26
    Issue Date: 2013-09-06 10:39:51 (UTC+8)
    Publisher: Springer International Publishing
    Abstract: In this paper, the vectorial Sturm-Liouville operator L Q =−d 2 dx 2 +Q(x) is considered, where Q(x) is an integrable m×m matrix-valued function defined on the interval [0,π] . The authors prove that m 2 +1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if Q(x) is real symmetric, then m(m+1) 2 +1 characteristic functions can determine the potential function uniquely. Moreover, if only the spectral data of self-adjoint problems are considered, then m 2 +1 spectral data can determine Q(x) uniquely.
    Relation: Boundary Value Problems 2011(40)
    DOI: 10.1186/1687-2770-2011-40
    Appears in Collections:[數學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1687-2770-2011-40.pdf264KbAdobe PDF199View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback