淡江大學機構典藏:Item 987654321/92113
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58649/92364 (63%)
造访人次 : 571955      在线人数 : 59
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/92113


    题名: Two cores of a nonnegative matrix
    作者: Peter Butkovič;Hans Schneider;Sergeĭ Sergeev;Tam, Bit-Shun
    贡献者: 淡江大學數學學系
    关键词: Max algebra;Nonnegative matrix theory;Perron–Frobenius theory;Matrix power;Eigenspace;Core
    日期: 2013-10-01
    上传时间: 2013-09-02 10:50:42 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: We prove that the sequence of eigencones (i.e., cones of nonnegative eigenvectors) of positive powers Ak of a nonnegative square matrix A is periodic both in max algebra and in nonnegative linear algebra. Using an argument of Pullman, we also show that the Minkowski sum of the eigencones of powers of A is equal to the core of A defined as the intersection of nonnegative column spans of matrix powers, also in max algebra. Based on this, we describe the set of extremal rays of the core.
    The spectral theory of matrix powers and the theory of matrix core is developed in max algebra and in nonnegative linear algebra simultaneously wherever possible, in order to unify and compare both versions of the same theory.
    關聯: Linear Algebra and its Applications 439(7), pp.1929-1954
    DOI: 10.1016/j.laa.2013.05.029
    显示于类别:[數學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML190检视/开启
    index.html0KbHTML35检视/开启
    Two cores of a nonnegative matrix.pdf514KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈