淡江大學機構典藏:Item 987654321/91977
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58788/92495 (64%)
造访人次 : 633698      在线人数 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91977


    题名: Mining customer knowledge for exploring online group buying behavior
    作者: Liao, Shu-hsien;Chu, Pei-hui;Chen, Yin-ju;Chang, Chia-Chen
    贡献者: 淡江大學管理科學學系
    关键词: Data mining;Association rules;Cluster analysis;Online group buying;Online group buying behavior
    日期: 2012-02-15
    上传时间: 2013-08-12 13:24:13 (UTC+8)
    出版者: Kidlington: Pergamon Press
    摘要: Online group buying is an effective marketing method. By using online group buying, customers get unbelievable discounts on premium products and services. This not only meets customer demand, but also helps sellers to find new ways to sell products sales and open up new business models, all parties benefit in these transactions. During these bleak economic times, group buying has become extremely popular. Therefore, this study proposes a data mining approach for exploring online group buying behavior in Taiwan. Thus, this study uses the Apriori algorithm as an association rules approach, and clustering analysis for data mining, which is implemented for mining customer knowledge among online group buying customers in Taiwan. The results of knowledge extraction from data mining are illustrated as knowledge patterns, rules, and knowledge maps in order to propose suggestions and solutions to online group buying firms for future development.
    關聯: Expert Systems with Applications 39(3), pp.3708-3716
    DOI: 10.1016/j.eswa.2011.09.066
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML199检视/开启
    index.html0KbHTML163检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈