English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7379874      線上人數 : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91977


    題名: Mining customer knowledge for exploring online group buying behavior
    作者: Liao, Shu-hsien;Chu, Pei-hui;Chen, Yin-ju;Chang, Chia-Chen
    貢獻者: 淡江大學管理科學學系
    關鍵詞: Data mining;Association rules;Cluster analysis;Online group buying;Online group buying behavior
    日期: 2012-02-15
    上傳時間: 2013-08-12 13:24:13 (UTC+8)
    出版者: Kidlington: Pergamon Press
    摘要: Online group buying is an effective marketing method. By using online group buying, customers get unbelievable discounts on premium products and services. This not only meets customer demand, but also helps sellers to find new ways to sell products sales and open up new business models, all parties benefit in these transactions. During these bleak economic times, group buying has become extremely popular. Therefore, this study proposes a data mining approach for exploring online group buying behavior in Taiwan. Thus, this study uses the Apriori algorithm as an association rules approach, and clustering analysis for data mining, which is implemented for mining customer knowledge among online group buying customers in Taiwan. The results of knowledge extraction from data mining are illustrated as knowledge patterns, rules, and knowledge maps in order to propose suggestions and solutions to online group buying firms for future development.
    關聯: Expert Systems with Applications 39(3), pp.3708-3716
    DOI: 10.1016/j.eswa.2011.09.066
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML107檢視/開啟
    index.html0KbHTML84檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋