English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56562/90363 (63%)
造訪人次 : 11849385      線上人數 : 83
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91972

    題名: Relative Association Rules Based on Rough Set Theory
    作者: Liao, Shu-hsien;Chen, Yin-ju;Ho, Shiu-Hwei
    貢獻者: 淡江大學管理科學學系
    關鍵詞: Rough set;Data mining;Relative association rule;Ordinal data
    日期: 2011-06-01
    上傳時間: 2013-08-12 13:09:53 (UTC+8)
    摘要: The traditional association rule that should be fixed in order to avoid the following: only trivial rules are retained and interesting rules are not discarded. In fact, the situations that use the relative comparison to express are
    more complete than those that use the absolute comparison. Through relative comparison, we proposes a new approach for mining association rule, which has the ability to handle uncertainty in the classing process, so that we can reduce information loss and enhance the result of data mining. In this paper, the new approach can be applied for finding association rules, which have the ability to handle uncertainty in the classing process, is suitable for interval data types, and help the decision to try to find the relative association rules within the ranking data.
    關聯: Lecture notes in Computer Science 7063, pp.185-192
    DOI: 10.1007/978-3-642-24958-7_22
    顯示於類別:[管理科學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Relative association rules based on rough set theory.pdf189KbAdobe PDF242檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋