本論文之數值模型即是利用The Desingularized Eulerian-Lagrangian Time-domain Approach method (The DELTA method)為理論基礎,來模擬密閉容器受強迫性振盪後,自由液面的運動情形,本文中在密閉的計算區域中,模擬容器在受強迫性的振盪之下,其所產生之自由液面的運動變化,並針對不同震盪方式及各種不同運動模式來進行數值計算模擬。本文中將模擬運動分為升降,橫盪、旋轉、等運動模式,設定初始值包含振幅、頻率、容器寬度及溶液深度等,並將模擬之結果做討論。計算結果之比較顯示使用本法可正確地模擬受到地震時重水池自由液面的運動情形,使用DELTA method相對於有限元素法能以較短的時間及更簡單的程式架構,模擬出相同或更好的結果。 The numeral model state in this work takes (The Desingularized Eulerian-Lagrangian Time-domain Approach method) as its theoretical basis. Desingularization means to move the singularities that traditionally located right on the boundaries of the computational domain in the domain, hence, the special treatment for singularities is avoided, we use Eulerian-Lagrangian to repeat the relocation of free surface. The numeral model adopts the fully nonlinerized combined free surface and body boundary condition, calculating the model and discussing the result of the calculation. In the closed area, simulate the change of free surface resulting from the strong shaking of containers and discuss the movement characteristics. Beside, the numeral will also be simulated and calculated according to different ways of shaking and different patterns of movement.