English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52514/87720 (60%)
造訪人次 : 9360500      線上人數 : 311
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91653

    題名: Nonlinear system control using a self-organizing functional-linked neuro-fuzzy network
    作者: Hsu, Chun-Fei
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Adaptive control;Neural control;Chaotic system;Neural-fuzzy network;Functional-linked neural network
    日期: 2013-08
    上傳時間: 2013-07-23 21:51:48 (UTC+8)
    出版者: Dordrecht: Springer Netherlands
    摘要: This study presents a self-organizing functional-linked neuro-fuzzy network (SFNN) for a nonlinear system controller design. An online learning algorithm, which consists of structure learning and parameter learning of a SFNN, is presented. The structure learning is designed to determine the number of fuzzy rules and the parameter learning is designed to adjust the parameters of membership function and corresponding weights. Thus, an adaptive self-organizing functional-linked neuro-fuzzy control (ASFNC) system, which is composed of a computation controller and a robust compensator, is proposed. In the computation controller, a SFNN observer is utilized to approximate the system dynamic and the robust compensator is designed to eliminate the effect of the approximation error introduced by the SFNN observer upon the system stability. Finally, to show the effectiveness of the proposed ASFNC system, it is applied to a chaotic system. The simulation results demonstrate that favorable control performance can be achieved by the proposed ASFNC scheme without any knowledge of the control plants and without requiring preliminary offline tuning of the SFNN observer.
    關聯: Nonlinear Dynamics 73(3), pp.1631–1643
    DOI: 10.1007/s11071-013-0891-y
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋