English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 54910/89265 (62%)
造訪人次 : 10600928      線上人數 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91652


    題名: Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system
    作者: Hsu, Chun-Fei
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Hermite neural network;Adaptive control;Neural control;Coupled chaotic system;Synchronization
    日期: 2012-09-14
    上傳時間: 2013-07-23 21:49:29 (UTC+8)
    出版者: London: Springer UK
    摘要: A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning.
    關聯: Neural Computing and Applications 22, pp.421-433
    DOI: 10.1007/s00521-012-1154-4
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML205檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋