English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 49647/84944 (58%)
造访人次 : 7706109      在线人数 : 63
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/91650


    题名: Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network
    作者: Hsu, Chun-Fei
    贡献者: 淡江大學電機工程學系
    关键词: Adaptive control;Neural control;Functional-linked neural network;Wavelet neural network
    日期: 2013-04-01
    上传时间: 2013-07-23 21:45:07 (UTC+8)
    出版者: Kidlington: Pergamon
    摘要: Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme.
    關聯: Engineering Applications of Artificial Intelligence 26(4), pp.1221–1229
    DOI: 10.1016/j.engappai.2012.11.012
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    EAAI_1864.pdf1778KbAdobe PDF294检视/开启
    index.html0KbHTML160检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈