English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55990/90025 (62%)
造访人次 : 11535223      在线人数 : 98
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/90597


    题名: Chinese text classification by the Naïve Bayes Classifier and the associative classifier with multiple confidence threshold values
    作者: Lu, Shing-Hwa;Chiang, Ding-An;Keh, Huan-Chao;Huang, Hui-Hua
    贡献者: 淡江大學資訊工程學系
    关键词: Association classification;Text classification;Text mining;Text categorization
    日期: 2010-08
    上传时间: 2013-07-03 09:53:33 (UTC+8)
    出版者: Amsterdam: Elsevier BV
    摘要: Each type of classifier has its own advantages as well as certain shortcomings. In this paper, we take the advantages of the associative classifier and the Naïve Bayes Classifier to make up the shortcomings of each other, thus improving the accuracy of text classification. We will classify the training cases with the Naïve Bayes Classifier and set different confidence threshold values for different class association rules (CARs) to different classes by the obtained classification accuracy rate of the Naïve Bayes Classifier to the classes. Since the accuracy rates of all selected CARs of the class are higher than that obtained by the Naïve Bayes Classifier, we could further optimize the classification result through these selected CARs. Moreover, for those unclassified cases, we will classify them with the Naïve Bayes Classifier. The experimental results show that combining the advantages of these two different classifiers better classification result can be obtained than with a single classifier.
    關聯: Knowledge-Based Systems 23(6), pp. 598–604
    DOI: 10.1016/j.knosys.2010.04.004
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML248检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈