English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385471      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/90563


    題名: Efficient Importance Sampling for Rare Event Simulation with Applications
    作者: Fuh, Cheng-der;Teng, Huei-Wen;Wang, Ren-Her
    貢獻者: 淡江大學財務金融學系
    關鍵詞: Bootstrap;confidence region;exponential tilting;moderate deviation;VaR
    日期: 2013-07
    上傳時間: 2013-06-27 15:21:35 (UTC+8)
    摘要: Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator within a parametric family, we propose a general account for finding the optimal tilting measure. To this end, when the moment generating function of the underlying distribution exists, we obtain a simple and explicit expression of the optimal alternative distribution. The proposed algorithm is quite general to cover many interesting examples, such as normal distribution, noncentral distribution, and compound Poisson processes. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management and bootstrap confidence regions in statistical inferences
    關聯: International conference on Business and information (BAI 2013)
    顯示於類別:[財務金融學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    全文.pdf262KbAdobe PDF152檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋