淡江大學機構典藏:Item 987654321/90308
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56828/90533 (63%)
造訪人次 : 12261564      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/90308


    題名: 基於類-屬性關聯度的啟發式離散化技術
    其他題名: Heuristic discretization technique based on the class-attribute interdependence
    作者: 周世昊;倪衍森
    貢獻者: 淡江大學管理科學學系
    關鍵詞: 離散化;數據挖掘;自頂向下;變精度粗糙集;不一致;discretization;data mining;top-down;variable precision rough sets;inconsistency
    日期: 2011-10
    上傳時間: 2013-06-10 16:25:30 (UTC+8)
    出版者: 瀋陽市:東北大學
    摘要: Discretization algorithms play an important role in many areas such as data mining, machine learning and artificial intelligence. Therefore, a heuristic discretization technique based on the class-attribute interdependence is proposed. A new discretization criterion is defined, which selects best cut points in terms of characteristics of the data itself and overcomes the existing deficiencies of state-of-the-art top-down discretization methods. A novel measure of inconsistency based on variable precision rough sets(VPRS) model is developed, which effectively controls information loss generated by discretization and allows an adaptive degree of misclassification. Empirical experiments and statistical analysis show that the proposed technique generates a better discretization scheme which significantly improves the accuracy of classification by running J4.8 and SVM.
    關聯: 控制與決策=Control and Decision 26(10),頁1504-1510
    顯示於類別:[管理科學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML173檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋