淡江大學機構典藏:Item 987654321/90308
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8184181      在线人数 : 7103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/90308


    题名: 基於類-屬性關聯度的啟發式離散化技術
    其它题名: Heuristic discretization technique based on the class-attribute interdependence
    作者: 周世昊;倪衍森
    贡献者: 淡江大學管理科學學系
    关键词: 離散化;數據挖掘;自頂向下;變精度粗糙集;不一致;discretization;data mining;top-down;variable precision rough sets;inconsistency
    日期: 2011-10
    上传时间: 2013-06-10 16:25:30 (UTC+8)
    出版者: 瀋陽市:東北大學
    摘要: Discretization algorithms play an important role in many areas such as data mining, machine learning and artificial intelligence. Therefore, a heuristic discretization technique based on the class-attribute interdependence is proposed. A new discretization criterion is defined, which selects best cut points in terms of characteristics of the data itself and overcomes the existing deficiencies of state-of-the-art top-down discretization methods. A novel measure of inconsistency based on variable precision rough sets(VPRS) model is developed, which effectively controls information loss generated by discretization and allows an adaptive degree of misclassification. Empirical experiments and statistical analysis show that the proposed technique generates a better discretization scheme which significantly improves the accuracy of classification by running J4.8 and SVM.
    關聯: 控制與決策=Control and Decision 26(10),頁1504-1510
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML35检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈