English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58808/92497 (64%)
造访人次 : 632044      在线人数 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/89403

    题名: Maximal exponents of polyhedral cones (III)
    作者: Raphael Loewy;Micha A. Perles;Tam, Bit-Shun
    贡献者: 淡江大學數學學系
    日期: 2013-07-01
    上传时间: 2013-05-29 14:42:04 (UTC+8)
    出版者: Providence: American Mathematical Society (AMS)
    摘要: Let K be a proper (i.e., closed, pointed, full, convex) cone in Rn. An n × n matrix A is said to be K-primitive if AK ⊆ K and there exists a positive integer k such that Ak(K \ {0}) ⊆ intK; the least such k is referred to as the exponent of A and is denoted by γ(A). For a polyhedral cone K, the maximum value of γ(A), taken over all K-primitive matrices A, is denoted by γ(K). It is proved that for any positive integers m, n, 3 ≤ n ≤ m, the maximum value of γ(K), as K runs through all n-dimensional polyhedral cones with m extreme rays, equals (n−1)(m−1)+1/2(1+(−1)(n−1)m). For the 3-dimensional case, the cones K and the corresponding K-primitive matrices A such that γ(K) and γ(A) attain the maximum value are identified up to respectively linear isomorphism and cone-equivalence modulo positive scalar multiplication.
    關聯: Transactions of the American Mathematical Society 365(7), pp.3535-3573
    DOI: 10.1090/S0002-9947-2013-05879-5
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Maximal exponents of polyhedral cones (III).pdf492KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈