English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9563903      線上人數 : 17163
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/89397


    題名: Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering
    作者: Chen, Chun-Hao;Hong, Tzung-Pei;Tseng, Vincent S.
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Data mining;Fuzzy set;Genetic algorithm;Genetic-fuzzy mining;Fuzzy k-means;Clustering;Multiple minimum supports
    日期: 2011-12-01
    上傳時間: 2013-05-27 11:52:33 (UTC+8)
    出版者: Heidelberg: Springer
    摘要: Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most of the previous approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In real applications, different items may have different criteria to judge their importance. In the past, we proposed an algorithm for extracting appropriate multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It used requirement satisfaction and suitability of membership functions to evaluate fitness values of chromosomes. The calculation for requirement satisfaction might take a lot of time, especially when the database to be scanned could not be totally fed into main memory. In this paper, an enhanced approach, called the fuzzy cluster-based genetic-fuzzy mining approach for items with multiple minimum supports (FCGFMMS), is thus proposed to speed up the evaluation process and keep nearly the same quality of solutions as the previous one. It divides the chromosomes in a population into several clusters by the fuzzy k-means clustering approach and evaluates each individual according to both their cluster and their own information. Experimental results also show the effectiveness and the efficiency of the proposed approach.
    關聯: Soft Computing 15(12), pp.2319-2333
    DOI: 10.1007/s00500-010-0664-1
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML266檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋