English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86412 (59%)
造訪人次 : 8175028      線上人數 : 80
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/89143

    題名: A Modified Two-phase Knowledge Acquisition Algorithm to Construct Worm Knowledge Base
    作者: Lin, Shun-Chieh;Tung, Chun-Ho;Chiang, Ding-An;Chang, Chung-I
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Computer Worm;Knowledge Acquisition;Knowledge Base;Security
    日期: 2011-04
    上傳時間: 2013-05-22 10:40:47 (UTC+8)
    出版者: Gyeongju-si: Advanced Institute of Convergence I T
    摘要: With the rapid development of Internet, the worm can spread and infect other computers quickly. Lots of variants are evolved too fast to hardly detect them before crafting the specific signatures in most anti-virus software and hardware. Since most of worm technological documents are nonstructured, the discovery of knowledge by data mining is becoming not easy. In this paper, we modify two-phase knowledge acquisition via adding Hierarchical Grids Relation Adjustment algorithm to adjust hierarchical worm knowledge hierarchy. We propose sibling, parent-child, and ancestordescendent relations to guide experts to easily extract the conflict relations in each level of grid. Through the updated grid hierarchy, more exact and efficient worm distinguish rules can be obtained for understanding the worm hierarchy. Also, a worm immune system is implemented here to help users diagnose their vulnerable systems and teach users how to defend threat of worms. Moreover, the system can learn the signatures of variant worms by interacting with experts to easily incremental learn the knowledge of variant worms.
    關聯: Advances in Information Sciences and Service Sciences 3(3), pp.136-146
    DOI: 10.4156/aiss.vol3.issue3.17
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋