English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8488068      在线人数 : 7838
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/89032


    题名: Along-Wind Aero-Elasticity of High-Rise Buildings by Using Indirect Forced Actuation Technique
    作者: Wu, Jong-Cheng;Chang, Ying-Chieh
    贡献者: 淡江大學土木工程學系
    关键词: Indircet forced actuation;High-rise building;Aerodynamic damping;Aerodynamic stiffness;State space equation;Genetic algorithm
    日期: 2011-08
    上传时间: 2013-05-06 10:47:59 (UTC+8)
    出版者: Reston: American Society of Civil Engineers
    摘要: The frequency-dependent aerodynamic damping and stiffness of high-rise buildings in along-wind motion have been systematically investigated and compared through wind tunnel tests under smooth wind flow. A novel identification scheme based on the indirect forced actuation technique was developed, involving only a simple curve-fitting technique on the frequency response function induced by the actuation. To ensure that global minimization in curve-fitting was achieved, a genetic algorithm and a conventional gradient search method were used in obtaining the final results. An alternative derivation of the frequency response function via the time-domain state space equation is also presented, which has the supporting advantage that the simulation of time history of the structural response becomes possible. To demonstrate the approach, various prism models representing different high-rise buildings with varied aspect ratios and height-width ratios were used in the experimental identification. A total of nine models with 15 different configurations were successfully tested and identified using the proposed identification scheme. The experimental results indicated that the wind flow suppresses the along-wind vibration and the effect becomes stronger as the wind velocity increases. The identified results showed that aerodynamic damping is always negative (and hence stabilizes the structure) and monotonically decreases with increasing reduced velocity. At the same reduced wind velocity, the aerodynamic damping becomes more significant as the height increases. The trend of the aerodynamic stiffness and its relation to the height is not clear and depends on each particular case. Considering approximation, the formulas of constant aerodynamic damping and stiffness ratios are also presented for comparison. Overall, the frequency-dependent aerodynamic damping and stiffness presented in this paper provide the database that can serve as a guideline for practical application.
    關聯: Journal of Structural Engineering 137(8), pp.791-802
    DOI: 10.1061/(ASCE)ST.1943-541X.0000325
    显示于类别:[土木工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML62检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈