English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51883/87052 (60%)
造訪人次 : 8460578      線上人數 : 106
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88839

    題名: Efficient Importance Sampling for Rare Event Simulation with Applications
    作者: Fuh, Cheng-der;Teng, Huei-Wen;Wang, Ren-Her
    貢獻者: 淡江大學財務金融學系
    關鍵詞: Bootstrap;Confidence region;Exponential tilting;Local asymptotic normal;Moderate deviation;Value at Risk
    日期: 2011-12
    上傳時間: 2013-04-29 20:23:51 (UTC+8)
    摘要: Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator, we propose a simple general account for finding the optimal tilting measure. To this end, we first obtain an explicit expression of the optimal alternative distribution, and then propose a recursive approximation algorithm for the tilting measure. The proposed algorithm is quite general to cover many interesting examples and can also be applied to a locally asymptotically normal (LAN) family around the original distribution. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management, and bootstrap confidence regions in statistical inferences.
    關聯: International Workshop on Statistical Computing in Quantitative Finance and Biostatistics: A Satellite Meeting for the 7th IASC-ARS Conference
    顯示於類別:[財務金融學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    議程.pdf262KbAdobe PDF56檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋