English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49287/83828 (59%)
Visitors : 7153146      Online Users : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88217


    Title: Tubular membrane filtration with a side stream and its intermittent backwash operation
    Authors: Wu, Rome-Ming;Lin, Yu-Ju
    Contributors: 淡江大學化學工程與材料工程學系
    Keywords: backwash;CFD;filtration;membrane;side stream
    Date: 2012-08-07
    Issue Date: 2013-04-13 20:50:50 (UTC+8)
    Publisher: Philadelphia: Taylor & Francis Inc.
    Abstract: The tubular membrane filtration system is widely applied to solid-liquid separation processes. Any improvements to the filtration module would increase separation efficiency, thus reducing operating costs. In this experiment, PMMA powder with an average particle diameter of 0.8 µm was filtered by a ceramic tubular membrane with an average pore size of 0.2 µm, and the impacts of the operating variables, such as suspension concentration, the filtration pressure, and the crossflow velocity on the permeate flux were discussed. In order to understand the increased permeate flux, the proposed module is comparable to the tubular membrane filtration module, but with an additional side stream under the same filtration mass flow rate. In addition, variations of shear force on the membrane surface are analyzed by CFD simulation, and the influence of backwash operations on the permeate flux is discussed. The results show that the side stream membrane filtration increased the shear force on the membrane surface, reduced fouling on the membrane surface, and increased the permeate flux. Furthermore, a backwash operation with a side stream flow channel could effectively clean the particles deposited in the module, thus, increasing the permeate flux.
    Relation: Separation Science and Technology 47(12), pp.1689-1697
    DOI: 10.1080/01496395.2012.659534
    Appears in Collections:[化學工程與材料工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML134View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback