English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84394 (59%)
Visitors : 7450823      Online Users : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88156

    Title: 類神經網路應用於颱風時期集水區流量預測之研究
    Other Titles: Investigation on watershed inflow forecast during typhoon period using artificial neural network
    Authors: 蕭閔鍾;Hsiao, Min-Chung
    Contributors: 淡江大學水資源及環境工程學系碩士班
    張麗秋;Chang, Li-chiu
    Keywords: 水庫入流量;颱風路徑;倒傳遞類神經網路;自組特徵映射網路;路徑分類;累積流量曲線;Watershed Inflow;typhoon track;BPNN;SOM;Track classification
    Date: 2012
    Issue Date: 2013-04-13 12:03:20 (UTC+8)
    Abstract: 颱風受到其氣象特徵於登陸區域地形之交互影響,使其路徑與結構改變 ,影響了降雨區域及時間分布,造成地區集中性降雨、河川水位暴漲、水庫入流量激增,若能從颱風路徑的分類瞭解其對集水區流量歷程之影響程度,進而建立相關預測模式可提供防洪策略與水庫防洪操作更多的資訊。
    Due the effects of the regional topography and its climatic characteristics, the track and structure of the landfall typhoons would be change or destroyed that affect the temporal and spatial distribution of rainfall. That may cause regional intense rainfall, the water level suddenly rise and reservoir inflow surge. We expect to investigate the impact of typhoon track on watershed inflow hydrograph from its classification; then, to build the corresponding forecasting models for providing useful flood information.
    This study would apply self-organizing map (SOM) to classify the track of typhoons and use back-propagation neural networks (BPNNs) to build forecast models with typhoon classification information or inflow characteristics for predicting one- to three-step ahead reservoir inflow. Moreover, we also combine inflow accumulative curves with the forecast track of typhoon to predict the whole inflow hydrograph during typhoon landfall period (long-term forecast). After classifying the forecast path, we analyzed the forecast result of the whole inflow hydrograph to investigate the relationship between the typhoon path and watershed inflow.
    From the results of short-term forecast models, the path classification information is helpful to short-term inflow forecasts. The typhoon path indeed affects the amount of reservoir watershed inflow. The long-term forecast results showed that the more accurate typhoon forecast path can achieve better results. The forecast inflow would be very different from the inflow hydrograph when the classification was incorrect.
    Appears in Collections:[水資源及環境工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback