English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7381109      Online Users : 40
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88084


    Title: 基於步態能量影像中使用條件式排序的局部二元特徵進行步態辨識
    Other Titles: Conditional sorting local binary pattern based on gait energy image for human gait recognition
    Authors: 戴義哲;Dai, Yi-Jhe
    Contributors: 淡江大學電機工程學系碩士班
    江正雄;Chiang, Jen-Shiun
    Keywords: 步態辨識;步態能量影像;條件式排序;局部二元特徵;Conditional-Sorting Local Binary Pattern;CS-LBP;Gait;GEI;Local Binary Pattern;LBP;Blend Direction
    Date: 2013
    Issue Date: 2013-04-13 12:00:02 (UTC+8)
    Abstract: 生物辨識可以藉由生物獨特的幾何特性或行為特徵來辨識物件的身份,包含人臉辨識、虹膜辨識、指紋辨識、手寫辨識、靜脈辨識、掌形辨識與步態辨識。上述的生物辨識大多需要與使用者近距離的接觸取得影像資訊與特徵或特殊擷取裝置才可以進行身份比對,但步態辨識僅需藉由攝影機從遠距離擷取出影像,即可進行身份比對。步態辨識是一個新興的生物辨識技術,可藉由每個人行走模式的不同去進行身份辨識,且可從遠距離擷取資訊,因此步態辨識漸漸成為一個熱門的生物辨識技術。在這篇論文當中,我們提出了一個新的方法來描述步態特徵,這個新方法是基於局部二元特徵延伸而出,我們改變了局部二元特徵原本的排序方式,並依照影像上漸層的方向而有不同的排序方式,我們稱為條件式排序的局部二元特徵。我們將條件式排序的局部二元特徵應用在步態能量影像上,經由條件式排序的局部二元特徵轉換後的影像即為新的特徵影像,之後使用此一新特徵來進行步態辨識,並提出選取其特徵方式。從本篇論文的研究結果中,我們所提出的特徵描述方法能夠有效的應用在步態辨識中,比其他現有的文獻還要有更高的辨識結果。
    Biometric identification techniques allow the identification of a person according to some geometric or behavioral traits that are uniquely associated with him or her. Commonly used biometrics are face, iris, fingerprints, handwriting, pal, vena and gait. An important limitation of most contemporary biometric identification system is related to the fact that they require the cooperation of individual that is to be identified and some special capturing devices. Gait recognition is an emerging biometric technology which aims to identify individuals using their walking style. The apparent advantage of gait recognition in comparison to other biometrics is that it doesn’t require the attention or cooperation of the observed subject. This work proposes a new feature extraction method for gait representation and recognition. The new method is extended from the technique of Local Binary Pattern (LBP) by changing the sorting method of LBP according to the blend direction to create a new approach, Conditional-Sorting Local Binary Pattern (CS-LBP). We then apply the CS-LBP on GEI to derive different blend direction images and calculate the recognition ability for each blend direction image for feature selections. From the experimental result, we proposed a new feature description method which can be effectively applied in gait recognition, also has a higher recognition results than other existing literature.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML103View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback