淡江大學機構典藏:Item 987654321/88074
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3952384      在线人数 : 811
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/88074


    题名: 複合材料與金屬材料輕航機的適墜性分析
    其它题名: The crashworthiness analysis of composite and metal light aircraft
    作者: 陳冠融;Chen, Kuan-Jung
    贡献者: 淡江大學航空太空工程學系碩士班
    陳步偉;Chen, Pu-Woei
    关键词: 適墜性;有限元素法;輕航機;複合材料;crashworthiness;Finite Element;light aircraft;composites
    日期: 2012
    上传时间: 2013-04-13 11:59:33 (UTC+8)
    摘要: 複合材料的優勢使得近年來航太界逐漸以複合材料取代傳統的金屬材料。由於飛航事故無法完全避免,所以在複合材料成為飛機結構趨勢下,探討複合材料飛機的適墜性成為了重要議題。近年來複合材料飛機之適墜性研究對象以大型飛機居多,在面對全複材輕航機之市場將增加的情況下,複合材料輕航機的適墜性也突顯其重要性。
    本研究使用Pro/ENGINEER建立STOL CH 701機身結構,材料的使用為6061-T6鋁合金以及 Std CF Fabric Composite。邊界條件依據ASTM規範的1.3 下降速度與AGATE所訂定的30度墜撞俯角。藉由以上資料金屬及複材機身的墜撞模擬,機身墜撞的結果必須符合MIL-STD-1290A所規定的15%安全機艙壓縮量內。動態模擬的過程先以Hypermesh網格化後再以LS-DYNA模擬墜撞情形並輸出數據。
    本研究的結果得知金屬機艙在30度墜撞角時,安全墜撞速度不得超過9.59 m/s,複材機艙則可承受18.05 m/s內的速度。金屬機艙的安全墜撞角度需低於16.56度,複材機艙則可高達84.9度。藉由墜撞速度及角度的結果可得出複材機艙的安全區域較金屬機艙高160%,複材機身也較金屬機身輕41%的重量。以上結果皆顯示以複材取代金屬材料皆得到更好的適墜性。
    In recent years, the advantages of composite materials make that the composite materials take the place of the metal materials for aerospace industry. Because the flight accidents cannot be avoided completely, so it’s an important issue to investigate crashworthiness of composite aircraft structure under the tendency of composite aircraft.

    In recent years, the mostly researching objects of composite aircraft crashworthiness are the large aircrafts. To face of the composite light aircraft market will increased, that also means that crashworthiness of the composite light aircraft also emphasize its importance. In this study we use Pro/ENGINEER to establish STOL CH 701 model, the metal material is Al 6061-T6, and composite material is Std CF Fabric Composite. The boundary conditions are 1.3 landing velocity followed by ASTM F2245-07 4.4.4.1, and 30degree impact angle defined by AGATE. The result of dynamic simulation must be under the 15% cockpit reducing rate defined by MIL-STD-1290A. The process of dynamic simulation is meshing model by finite element software Hypermesh, then output the simulation data by LS-DYNA.

    The result of this study was informed that the safety impact speed of metal material cockpit is 9.59 m/s while crashed for 30 degree impact angle, but composite cockpit can afford the speed greater than defined by ASTM. The safety impact angle of metal cockpit is 16.56 degree, composite cockpit is 84.9 degree. By the relation of impact speed and impact angle to cockpit reducing rate, the safety crash zone of composite cockpit is 160% higher than metal cockpit. Above these results, light aircraft has the batter crashworthiness to replace metal material by composite material.
    显示于类别:[航空太空工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML184检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈