English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 54451/89232 (61%)
造访人次 : 10570657      在线人数 : 14
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88070

    题名: Numerical simulation of flapping airfoil in gusty environments
    其它题名: 拍撲翼面在陣風環境下之研究
    作者: 王瑞麟;Wang, Ruei-Lin
    贡献者: 淡江大學航空太空工程學系碩士班
    关键词: 拍撲翼;陣風;動態網格;延遲失速;Flapping wing;Gust;Dynamic Grid;LEV
    日期: 2012
    上传时间: 2013-04-13 11:59:22 (UTC+8)
    摘要: 以拍撲翼作為升力機制的微飛行器,現今已被廣用在軍事、救援、探勘等任務中,但是其飛行上的低高度、低速的飛行限制條件,造成抗風能力不足的現象,因此,探討低速陣風的影響已成為當前航空工業研究的重點。
    Micro Aerial Vehicles (MAV) use flapping wing as their flying
    mechanism. Nowadays MAV have been used more intensively in daily
    military, rescue, or reconnaissance missions, but their inherent nature of
    low altitude, low speed operation envelope will lead to their weak wind
    resistance ability, and thus the investigation of low level gust wind effect is
    becoming the focus point in recent aeronautical research.
    By the rapidly development in recent computer technology, we can improve simulation accuracy without using more time, through escalating the grid’s number. In this thesis, first choose a standard 2D flapping airfoil as a benchmark, then we can implementing gusty environment in several different directions, and simulate the wind amplitude with both constant speed and sine wave forms by using the dynamic grid technique of software Fluent to generate flapping motion. Our results show that the gusty environment has a strong effect on the vortices both on the upper and the lower surfaces, and will have direct influence on the lift and drag values of the flapping wing. But most profound effect is from the wind direction. As a result, this research will be very helpful to learn about the flapping airfoil’s aerodynamic performance in gusty environment, and could be an important cornerstone in the wind resistance capability consideration of future flapping MAV.
    显示于类别:[航空太空工程學系暨研究所] 學位論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈