English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51296/86402 (59%)
Visitors : 8154317      Online Users : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88070

    Title: Numerical simulation of flapping airfoil in gusty environments
    Other Titles: 拍撲翼面在陣風環境下之研究
    Authors: 王瑞麟;Wang, Ruei-Lin
    Contributors: 淡江大學航空太空工程學系碩士班
    Keywords: 拍撲翼;陣風;動態網格;延遲失速;Flapping wing;Gust;Dynamic Grid;LEV
    Date: 2012
    Issue Date: 2013-04-13 11:59:22 (UTC+8)
    Abstract: 以拍撲翼作為升力機制的微飛行器,現今已被廣用在軍事、救援、探勘等任務中,但是其飛行上的低高度、低速的飛行限制條件,造成抗風能力不足的現象,因此,探討低速陣風的影響已成為當前航空工業研究的重點。
    Micro Aerial Vehicles (MAV) use flapping wing as their flying
    mechanism. Nowadays MAV have been used more intensively in daily
    military, rescue, or reconnaissance missions, but their inherent nature of
    low altitude, low speed operation envelope will lead to their weak wind
    resistance ability, and thus the investigation of low level gust wind effect is
    becoming the focus point in recent aeronautical research.
    By the rapidly development in recent computer technology, we can improve simulation accuracy without using more time, through escalating the grid’s number. In this thesis, first choose a standard 2D flapping airfoil as a benchmark, then we can implementing gusty environment in several different directions, and simulate the wind amplitude with both constant speed and sine wave forms by using the dynamic grid technique of software Fluent to generate flapping motion. Our results show that the gusty environment has a strong effect on the vortices both on the upper and the lower surfaces, and will have direct influence on the lift and drag values of the flapping wing. But most profound effect is from the wind direction. As a result, this research will be very helpful to learn about the flapping airfoil’s aerodynamic performance in gusty environment, and could be an important cornerstone in the wind resistance capability consideration of future flapping MAV.
    Appears in Collections:[航空太空工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback