English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58796/92528 (64%)
Visitors : 639070      Online Users : 46
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88045

    Title: 微型風力發電機外罩與葉片效應之空氣動力特性探討
    Other Titles: Investigation of aerodynamics characteristics of micro wind turbine with different flanged diffuser and blades
    Authors: 洪呈緯;Hung, Cheng-Wei
    Contributors: 淡江大學航空太空工程學系碩士班
    陳增源;Chen, Tseng-Yuan
    Keywords: 微型水平軸風力發電機;非扭轉葉片;翼緣擴散外罩;風洞實驗;Micro wind turbine;Flanged diffuser;solidity;Wind tunnel test
    Date: 2012
    Issue Date: 2013-04-13 11:58:18 (UTC+8)
    Abstract: 本研究主要探討微型水平軸風力發電機在擴散外罩下,匹配不同的葉片的空氣動力特性。首先,以數值模擬軟體FLUENT探討擴散外罩數值,結果顯示,以擴散角度30度、入口直徑30公分、長度10公分的擴散外罩可以增加空氣的流速50%,另實驗結果顯示將此擴散外罩安裝在上底20.5公分,下底46.5公分,長50公分的擋風罩上,可得到最佳的功率輸出。
    This thesis investigates the aerodynamic characteristics of micro, horizontal-axis wind turbine with different flanged diffusers and blades. First, a numerical study using FLUENT was conducted to investigate the flow field inside the flanged diffusers. A flanged diffuser with inlet diameter of 30 cm, length of 10 cm and diffusion angle of 30o was used for this purpose. Results show that the flow accelerates by 50% inside the flanged diffusers. Experimental study shows that a better power output can be achieved when installing the flanged diffuser inside a wind shield of 50 cm height, 20.5 and 46.5 cm top and bottom widths, respectively.The blades applied in this thesis are large-tip, non-twisted due to easily machined. The experimental studies were conducted in a wind tunnel system to obtain the relations between the power coefficient (CP) and tip speed ratio (TSR), and between the torque coefficient (CT) and TSR.
    Effects of the rotor position inside flanged diffuser, rotor solidity and blade number on rotor aerodynamic performance are investigated. The blade cross-section is NACA4415 airfoil. The pitch angle of the blades is fixed at 30°, and the chord length ratio between the blade root and tip is fixed at 0.3. Results show that larger power output is obtained when the rotor positioned approach the diffuser inlet. The larger the blade number is, the higher the power output is, but the difference is limited. In general, the 60%-rotor solidity achieves a better power output. Comparisons between the present and previous blades show that non-twisted, large-tip blades have better power and torque coefficients, and achieve the larger power output at lower rotor rotational speed. This result provides some important information in blade design of micro-wind turbines.
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback