English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8698086      Online Users : 220
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88019

    Title: 加肋多孔板與聲場耦合之脈衝響應
    Other Titles: Impulse responses of a stiffened porous plate coupled with an acoustic field
    Authors: 吳鑄城;Wu, Chu-Cheng
    Contributors: 淡江大學機械與機電工程學系碩士班
    Keywords: 多孔樑;多孔板;加肋多孔板;多孔介質;彈性邊界;有限元素頻域分析;Porous Beam;Porous Plate;Stiffened Porous Plate;Porous Medium;Elastic Restraints;Finite Element Frequency-Domain Analysis
    Date: 2013
    Issue Date: 2013-04-13 11:57:00 (UTC+8)
    Abstract: 本文使用Biot動態統御方程組,於拉普拉斯域應用有限元素理論建立多孔介質三維六面體之剛度矩陣,並引用前人建立之多孔介質二維三角形及四邊形元素、多孔樑元素與多孔板二維四邊形元素等之剛度矩陣,最後伴隨多點拘束法完成流體位移剛度矩陣及耦合結構之有限元素頻域分析。
    This study applied Biot''s dynamic governing equations in Laplace domain and used the finite element theory to build the stiffness matrix of a porous medium 3D hexahedron element. Then, the matrices of porous medium 2D triangular element as well as quadrilateral element, porous beam, and porous plate 2D quadrilateral element derived by other researchers are adopted. Finally, the multipoint constraint approach is applied to generate the stiffness elements that related to the fluid displacements and complete the Finite Element Frequency Domain Analysis (FEFDA) of a stiffened porous plate coupled with a porous medium.

    This study used porous medium to simulate acoustic field and built a model of a stiffened porous plate coupled with an acoustic field. Based on the analysis results of the system of a stiffened plate coupled with an acoustic field, the FEFDA results of the porous beam, the porous plate, the stiffened porous plate, acoustic field, and the coupling of the stiffened porous plate and the acoustic field were verified. Then, through the geometric analysis and material parameter variance analysis, the influential factors of modal frequency and amplitude in the coupling structure were explored. According to the analysis results, besides the significant influence of boundary restraints on modal frequencies, the dynamic dissipation effects caused by the coupling of the fluid with the solid skeleton and the bulk modulus of the fluid were also the main factors influencing the system modal frequencies. In addition, the FEFDA of the stiffened porous plate coupled with the acoustic field conducted by this study could indeed achieve the goal of improving the acoustic behaviors of certain areas.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback