English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49962/85138 (59%)
造訪人次 : 7790321      線上人數 : 82
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87986

    題名: 中文意見探勘系統之句法分析
    其他題名: Grammar analysis of a Chinese opinion mining system
    作者: 陳子龍;Chen, Zi-Long
    貢獻者: 淡江大學資訊工程學系資訊網路與通訊碩士班
    關鍵詞: 意見探勘;預設Topic;句型文法;Opinion Mining;Default Topic;Sentence Grammar
    日期: 2012
    上傳時間: 2013-04-13 11:55:26 (UTC+8)
    摘要: 現今,因為網路的快速發展,發展出了以使用者為中心的網站,並且提供網站(部落格、論壇、討論區…等)讓使用者分享自己對公司或產品的評價;在這些散布在網路上大量的文章,為了能快速取得文章內之資訊,中文意見探勘系統就為之重要。本論文主要研究中文意見探勘系統之句型文法,分析Mobile01和PTT的電信和網路兩大熱門討論區發文者對公司或產品之文章。我們句型文法主要利用「預設Topic」、「子句優先」和「對應關係」搭配句型來配對意見元素表達發文者意見。實驗結果顯示各月份和不同討論區之準確率、回收率和F1相差不多,顯示我們的句型文法是穩定的;另外在考慮預設Topic情況下,實驗結果顯示對整體之數據是有成效的。
    Today, the fast development of the Web has resulted in the user-centric websites and websites (blog, forum, BBS, etc) that allow users to share their comments on a company or a product. For the rapid access to information contained in the huge amounts of articles on the Web, the Chinese opinion mining system is very important. This paper discusses the sentence grammar of the Chinese opinion mining system, analyzes the articles on companies or products published on two popular BBS of Mobile01 and PTT telecommunications. Our sentence grammar mainly uses “default topic”, “clause priority” and “corresponding relationship” coupled with sentences to match up with the opinion elements to express the views of the article posters. The experimental results suggest that precision, recall and F1 are the same in various months and BBS, suggesting our sentence grammar is stable. By considering the default topic, the experimental results prove that the proposed method is effective in terms of overall data.
    顯示於類別:[資訊工程學系暨研究所] 學位論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋