English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52310/87426 (60%)
Visitors : 9081305      Online Users : 304
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87966

    Title: 精確目標物定位法於CAMSHIFT追蹤應用
    Other Titles: Accurate and robust roi localization in CAMSHIFT tracking application
    Authors: 簡瑞辰;Chien, Jui-Chen
    Contributors: 淡江大學資訊工程學系碩士班
    Keywords: 物件追蹤;平均位移法;Camshift;泛洪演算法;Tracking;Mean-Shift;flooding
    Date: 2012
    Issue Date: 2013-04-13 11:54:25 (UTC+8)
    Abstract: 追蹤物體在電腦視覺上一直以來都是一個很重要的題目,本文裡我們提出一個改善CAMSHIFT的物件追蹤方法。我們使用2D histogram 包含Hue 和亮度資訊來描述目標的特徵,使用此方式能夠解決影像品質不好和具有achromatic像素點的問題。方法中並使用flooding演算法和貢獻度計算,使獲得的直方圖可以如實反映出目標的色彩資訊和各個色彩對前景和背景的辨識度。為了能適應的前景/背景的變化,我們提出更新ROI尺寸和目標直方圖的方法。實驗結果顯示,我們所提出的方法比現有的方法,能保有穩定且令人滿意的結果。
    In this paper, we present an improved version of CAMSHIFT algorithm. We use a 2D histogram including hue and brightness to describe the color feature of the target. In this way, videos with poor quality or achromatic points can be better characterized. The Flooding process and contribution evaluation are used to obtain a precise target histogram which reflects true color information and discrimination ability. To be adaptive to the foreground/background variation, formula for updating ROI size and target histogram are proposed. The proposed method is compared with existing methods and shows steady and satisfactory results.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback