English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49287/83828 (59%)
Visitors : 7148410      Online Users : 71
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87946


    Title: 以Web 2.0為概念設計適合高中生閱讀學習之英文文章推薦系統
    Other Titles: Using Web 2.0 conceptual to design an English article recommendation system for senior high school students reading and learning
    Authors: 游文瑞;Yu, Wen-Jui
    Contributors: 淡江大學資訊工程學系碩士在職專班
    郭經華
    Keywords: 全民英文能力分級檢定測驗;智慧型互動式網路語言學習社群;英文新聞;推薦系統;web 2.0;Facebook;Facebook Social Plugins;GEPT;IWiLL;Web News;Recommendation System
    Date: 2012
    Issue Date: 2013-04-13 11:53:32 (UTC+8)
    Abstract: Web 2.0的精神係透過社群的集體力量,創造、分享並評論屬於使用者自身或他人觀點的內容。本研究的目的是以Web 2.0為概念設計適合高中生閱讀學習之英文文章推薦系統。使用的語料庫分別是「全民英文能力分級檢定測驗(GEPT)」六級單字字彙庫、智慧型互動式網路語言學習社群(Intelligent Web-based Interactive Language Learning,簡稱IWiLL)中,高中生所發表的文章、高中英文課本的課文(SHSETs)、網路上收集的英文新聞文章(Web News)及PyDict英漢字典。首先將IWiLL、SHSETs及Web News語料庫做資料前置處理,並結合GEPT六級英文單字字彙庫做文章難易度計算,並將文章中連續3個單字(Trigram)的字彙或片語與PyDict比對並進行翻譯供學習者記憶與學習。
    本研究透過與Facebook的結合,讓學習者只需要使用Facebook帳戶登入系統,再加上使用Facebook Social Plugins元件等,讓學習者將喜歡的文章或是對文章所發表的內容感受,除了在系統中可以呈現顯示外,也可以讓Facebook上的朋友知道,學習者彷彿置身於Facebook中,有如使用Facebook應用程式一般,可以和Facebook上的朋友產生互動、分享與推薦的效果,且不受限於戶內使用學習,也可以在戶外利用使用智慧型行動裝置上網來學習,以達到無所不在的學習。
    The spirit of Web 2.0 is through the collective power of communities to create, share and comment on the opinions of the user and others. The purpose of this study is to use the concept of Web 2.0 to design an English article recommendation system for senior high school students who are reading and learning. Five different databases of English vocabularies are utilized in this work. They are the GEPT level six, Intelligent Web-based Interactive Language Learning (IWiLL), senior high school English textbooks (SHSETs), the Web News collected on the Internet and PyDict English-Chinese dictionary. First, IWiLL, SHSETs and Web News Corpus are used for data pre-processing. Then they are combined with the GEPT level six to do article difficulty calculation. Lastly, phrases of three words in the article are compared with PyDict dictionary to translate into Chinese for learners to remember and learn.
    In this study, the system is combined with Facebook; therefore, learners only need to use a Facebook account to log on to the system with the use of Facebook Social Plugins components so that learners who like the article may share and recommend it to friends on Facebook. This is not limited to studying indoors, as learners can also use smart mobile devices outdoors to connect to the Internet in order to achieve ubiquitous learning.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML81View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback