English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51510/86705 (59%)
造訪人次 : 8260492      線上人數 : 90
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87936


    題名: 骨盆底肌肉訓練之數據分群
    其他題名: The data clustering of pelvic floor muscle training
    作者: 林恪任;Lin, Ko-Jen
    貢獻者: 淡江大學資訊工程學系碩士班
    陳瑞發
    關鍵詞: 集群分析;骨盆底肌肉運動;K-means;DBSCAN;SLINK;Clustering Analysis;Pelvic Floor Muscle Training (PFMT)
    日期: 2012
    上傳時間: 2013-04-13 11:53:06 (UTC+8)
    摘要:       透過安裝於骨盆底肌肉訓練輔助器上的感測器,可以取得如施力、時間等資訊,分析這些資料並將其分群,提供給醫師判斷,賦予其專業認定的特性給各cluster。這些學習後的資料便成為患者的個人化參考依據,讓病人不在醫院時也能正確練習。
          本論文的目的在研究分析三類分群演算法,將其運用在骨盆底肌肉訓練的資料分群上。在centroid-based的部份引用了k-means,density-based的部份提出了源自DBSCAN的density-split,而connectivity-based則以SLINK的概念發展了chain。此外,針對noise造成的問題,本論文提出在分群前先排除noise的方法,欲藉此改善分群結果,讓醫師判讀與後續使用的參考資料更為精確。
          By attaching a pressure sensor on the device of pelvic floor muscle training (PFMT), we can collect data such as force and time. After data clustering, the proposed system can provide the PFMT data to the doctor. The doctor identifies the cluster by his/her professional knowledge. This identified data becomes the personal training data of the patient.
          The purpose of this thesis is studying three kinds of clustering algorithms, and implementing it for clustering the data of PFMT. In centroid-based, we reference "k-means". In density-based, we propose "density-split" which is inspired by DBSCAN. Finally, in connectivity- based, we propose "chain" which based on the concept of SLINK. Besides, in order to solve the problem caused by noise. We propose a method that excludes noise before clustering which can improve clustering result, and provide more accurate training data for clinical use.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML71檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋