English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51296/86402 (59%)
造訪人次 : 8169422      線上人數 : 53
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87928


    題名: 基於預測性任務轉移之高效能雲端計算系統
    其他題名: A high-performance cloud computing system based on proactive task migration
    作者: 程以諾;Cheng, Yi-No
    貢獻者: 淡江大學資訊工程學系碩士班
    林其誼;Lin, Chi-Yi
    關鍵詞: 緩慢任務;競爭式執行;Hadoop;LATE;Slow Task;Speculative Execution
    日期: 2012
    上傳時間: 2013-04-13 11:52:43 (UTC+8)
    摘要: 雲端運算近年來十分火紅,從IBM、Microsoft到Amazon每家廠商都推出雲端服務,在雲端運算迅速崛起的同時也出現些許問題。將資料存放在雲端上,利用雲端做龐大資料分析與處理的同時,如果出現錯誤或是網路斷線該如何解決?本篇論文主要探討主題為雲端運算上容錯議題,主要著眼在如何在MapReduce中有效且正確判定節點中的緩慢任務,在判定之後能夠使用較有效率的方法做重新分配處理緩慢任務,以避免整體工作時間被緩慢任務所拖慢進而影響到工作完成時間。本文主要以Hadoop作為開發實驗環境,利用模擬比較Hadoop、LATE以及本篇所提出之方法並分析其優劣。
    Cloud computing is gaining popularity in recent years. Many renowned companies such as IBM, Microsoft, Amazon, are providing services over the cloud. It is inevitable that failures may occur in the cloud, so how to make a cloud computing system fault-tolerant is very important. In this research, we try to identify true slow tasks in Hadoop MapReduce’s jobs and migrate them to other compute nodes before failures occur. Specifically, we modify the LATE algorithm to make MapReduce scheduler adapt to tasks with variable progress rates. We also study three rescheduling methods and compare their performances.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML86檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋