English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51883/87052 (60%)
Visitors : 8460542      Online Users : 131
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87928

    Title: 基於預測性任務轉移之高效能雲端計算系統
    Other Titles: A high-performance cloud computing system based on proactive task migration
    Authors: 程以諾;Cheng, Yi-No
    Contributors: 淡江大學資訊工程學系碩士班
    林其誼;Lin, Chi-Yi
    Keywords: 緩慢任務;競爭式執行;Hadoop;LATE;Slow Task;Speculative Execution
    Date: 2012
    Issue Date: 2013-04-13 11:52:43 (UTC+8)
    Abstract: 雲端運算近年來十分火紅,從IBM、Microsoft到Amazon每家廠商都推出雲端服務,在雲端運算迅速崛起的同時也出現些許問題。將資料存放在雲端上,利用雲端做龐大資料分析與處理的同時,如果出現錯誤或是網路斷線該如何解決?本篇論文主要探討主題為雲端運算上容錯議題,主要著眼在如何在MapReduce中有效且正確判定節點中的緩慢任務,在判定之後能夠使用較有效率的方法做重新分配處理緩慢任務,以避免整體工作時間被緩慢任務所拖慢進而影響到工作完成時間。本文主要以Hadoop作為開發實驗環境,利用模擬比較Hadoop、LATE以及本篇所提出之方法並分析其優劣。
    Cloud computing is gaining popularity in recent years. Many renowned companies such as IBM, Microsoft, Amazon, are providing services over the cloud. It is inevitable that failures may occur in the cloud, so how to make a cloud computing system fault-tolerant is very important. In this research, we try to identify true slow tasks in Hadoop MapReduce’s jobs and migrate them to other compute nodes before failures occur. Specifically, we modify the LATE algorithm to make MapReduce scheduler adapt to tasks with variable progress rates. We also study three rescheduling methods and compare their performances.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback