English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8710562      Online Users : 72
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87900

    Title: 微蒸餾塔之性能模擬研究
    Other Titles: Simulation study of the performance of micro distillation columns
    Authors: 陳瑞彬;Chen, Reui-Bin
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    張煖;Chang, Hsuan
    Keywords: 薄膜;蒸餾;模式;微通道;membrane;distillation;Modeling;microchannel
    Date: 2013
    Issue Date: 2013-04-13 11:51:01 (UTC+8)
    Abstract: 本論文以模擬方式探討微蒸餾系統之性能。本研究在Aspen Custom ModelerR平台上,建立精餾段、氣提段、冷凝器與再沸器之數學模式,並探討系統之穩態特性、參數影響與阻力分析,且與傳統塔及中空纖維蒸餾塔進行比較。
    This thesis investigates the performance of micro distillation columns (MDC) by simulation study. The mathematical models of the rectifying section, stripping section, condenser and reboiler are built on the Aspen Custom Modeler R platform. The steady state characteristics of the distillation system, parametric study of operating and device variables, heat and mass transfer resistances are analyzed. The micro distillation column, conventional distillation columns (CC) and hollow fiber distillation columns (HFC) are compared for their transfer characteristics and separation performance.
    On the internal profiles of the micro distillation column, the operation gives close to linear temperature and composition distributions, indicating more effective utilization of the column space and leads to a HTU (height of a transfer unit) of only a few centimeters. However, the effective equilibrium curve significantly deviates from the equilibrium curve, which is not beneficial to the energy utilization. The exergy analysis confirms this result.
    On the parameters influence study, the boilup ratio, reflux ratio and membrane thickness are the most significant factors affecting the product purity. For heat duties of the column, feed rata and membrane pore size give greater influence. The resistance analysis reveal that mass transfer resistance is much important than heat transfer resistance, in particular the liquid phase resistance. The improvement of the column should be focused on the mass transfer coefficient of the liquid channels.
    To achieve the same product purity, the HTUs of MDC and CC are a few centimeters and tens of centimeters. The key mass transfer resistances of MDC and CC lie in the liquid phase and vapor phase, respectively. The characteristics of MDC and HFC are similar, such as the HTU and interface area per unit volume, but the distributions of mass transfer resistance are quite different. For MDC, the overall mass transfer coefficient is greater and the membrane resistance is not significant, however, the major resistance of HFC is on the membrane and liquid phase.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback