淡江大學機構典藏:Item 987654321/87684
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10575732      在线人数 : 8060
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/87684


    题名: 資料複雜度指標對資料探勘分類技術的影響
    其它题名: The influence of data complexity indices on classification techniques in data mining
    作者: 沈彥廷;Shen, Yen-Ting
    贡献者: 淡江大學統計學系碩士班
    陳景祥;Chen, Ching-Hsiang
    关键词: 資料複雜度;資料探勘;分類器;分類錯誤率;敏感度;特異度;data complexity;data mining;classifiers;classification error rate;sensitivity;specificity
    日期: 2012
    上传时间: 2013-04-13 11:32:44 (UTC+8)
    摘要:   資料探勘領域中的分類技術經常被用於處理各種分類問題。如何從眾多的分類技術中選擇合適的方法進行分析研究即成為一個重要的課題。以往對於各種分類器的性能評估,通常是比較分類器對於一些測試資料集的預測正確率或模型訓練時間等等……。然而在實務上,每一個不同的分類問題皆有其獨特的資料複雜度,對於所有的測試資料集都給予相同權重的評估方法顯然過於理想化。因此,本研究引入九種資料複雜度指標以量化分類問題的資料特徵,並利用分類錯誤率、敏感度以及特異度來觀察這些資料複雜度指標對於七種常用的分類技術之影響。研究結果顯示,不同的資料特徵的確會對分類技術的效能產生影響。因此未來在處理分類問題時,研究者即可參考本研究結果,先行計算較具代表性的資料複雜度指標以預估可能的分類情形,並且依照資料的結構與特徵來選擇較合適的分類方法以進行後續的研究。
      Classification techniques in data mining are often used to deal with a variety of classification problems. Choosing suitable method for analysis from many classification techniques becomes an important issue. For the performance evaluations of the classifiers, researchers used to compare them on several datasets in terms of classification accuracy or training time, and so on. In practice, however, different classification problems has their unique data complexities. The assessment methods that give same weight to all datasets is obviously idealistic. Therefore, we adopt nine data complexity indices to quantify the data characteristics and use classification error rate, sensitivity, and specificity to observe the influence of these data complexity indices among seven commonly used classification techniques. The results show that different data characteristics indeed have an impact on classification performance. So when dealing with classification problems, researchers can firstly calculate data complexity indices suggested in this paper to estimate the classification difficulties, and use the data complexity indices to choose appropriate classification method for the follow-up study.
    显示于类别:[統計學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML217检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈