English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49283/83828 (59%)
Visitors : 7146964      Online Users : 26
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/87504


    Title: A credit cardholder behavioral scoring model using residual correction Fourier GM (1,1)
    Other Titles: 灰色傅立葉行為評等模式之建構
    Authors: 林哲敏;Lin, Che-Min
    Contributors: 淡江大學管理科學學系碩士班
    陳怡妃;Chen, I-Fei
    Keywords: 行為評等;灰色系統理論;灰色傅立葉;馬可夫鏈;貝氏機率;Behavioral Scoring;grey system theory;Grey Fourier;Markov Chain;Bayesian
    Date: 2012
    Issue Date: 2013-04-13 11:17:11 (UTC+8)
    Abstract: 本研究之目的是有鑒於金融機構中所隱藏之潛在信用風險,故藉由縮短顧客還款行為之觀察期,以建構預測顧客未來盈利能力之行為評等模式。藉由灰色理論善於處理短期資料之特性,我們建立GM(1,1)模型來縮短預測觀察期並驗證其用在分類資料的適用性,企圖降低銀行可能潛在的信用風險。然而,事實上GM(1,1)乃常用於預測面問題之解決,鮮少用於處理分類之相關議題上,導致其預測準確度不如預期,因此本研究將GM(1,1)模型結合具有週期性函數特性的傅立葉轉換,將其應用於殘差修正上,以提高模型的預測精確度。再者,由於傳統上馬可夫鏈被廣泛地應用在信用評等及行為評等上,故本研究利用馬可夫鏈模型之預測準確率視為灰色傅立葉模型之參考基準。最後,本文針對GM(1,1)模型,FGM模型,馬可夫鏈模型以及BGM(張雯琪,2011)等四個模型進行相關之比較,結果顯示FGM模型以及BGM模型皆有優異的預測準確率,且成功地將顧客還款行為之觀察期縮短為少於十期,此舉對於新申請帳戶之顧客,亦可達到快速制定授信決策之效,如此便能針對既有客戶提供更適切的服務,進而增加銀行之利潤。
    The purpose of this study is to construct the behavioral scoring model of predicting customer future profitability individual by shortening the period of observation his/ her payment profitability. Firstly, We construct GM(1,1) model to test the applicability of short-observation credit prediction associated with classification problems. Then, we proposed Fourier residual grey modification model (FGM) to improve the predictive accuracy. Next, we use Markov chain, a widely applied traditional method for solving credit/behavioral scoring problem, to provide a reference level of prediction accuracy. Finally, after comparing to GM, FGM, MC and GBM developed by Chang (2011), we find that the FGM(1,1) model and Bayesian grey model have outstanding performance of prediction accuracy. We find that the FGM(1,1) model and Bayesian grey model have outstanding performance of prediction accuracy and shorten the observation periods for less than 10 observations, successfully. This study delivers a managerial insight that the proposed model enables banks to take effect of the quick credit decisions, and then the financial institute can design appropriate marketing portfolios management based on the more accurately predicted status of customers future profitability.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML172View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback